|
Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wavefront distortions: it aims at correcting the deformations of an incoming wavefront by deforming a mirror in order to compensate for the distortion. It is used in astronomical telescopes〔 〕 and laser communication systems to remove the effects of atmospheric distortion, in microscopy, optical fabrication and in retinal imaging systems〔 〕 to reduce optical aberrations. Adaptive optics works by measuring the distortions in a wavefront and compensating for them with a device that corrects those errors such as a deformable mirror or a liquid crystal array. Adaptive optics should not be confused with active optics, which works on a longer timescale to correct the primary mirror geometry. Other methods can achieve resolving power exceeding the limit imposed by atmospheric distortion, such as speckle imaging, aperture synthesis, and lucky imaging, or by moving outside the atmosphere with space telescopes, such as the Hubble Space Telescope. == History == Adaptive optics was first envisioned by Horace W. Babcock in 1953, and was also considered in science fiction, as in Poul Anderson's novel Tau Zero (1970), but it did not come into common usage until advances in computer technology during the 1990s made the technique practical. Some of the initial development work on adaptive optics was done by the US military during the Cold War and was intended for use in tracking Soviet satellites. MicroElectroMechanical Systems (MEMS) deformable mirrors are currently the most widely used technology in wavefront shaping applications for adaptive optics given their versatility, maturity of technology and the high resolution wavefront correction that they afford. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「adaptive optics」の詳細全文を読む スポンサード リンク
|